Finding the most simple, safe, clean, and desirable way to decarb has been a passion I’ve been chasing for a few years now.  Chopping through all the misinformation is very confusing for someone new to the concept of decarb as well as those that have been doing it for decades.  We are turning those decades of bad information upside-down with this simple process that’s already used in a variety of applications. I’m not creating something new here but utilizing tech that others are already using.  I’m happy because it’s crazy easy; I’m unhappy because it’s taken me forever to stumble onto something so simple.  For those unfamiliar with basic decarbing considerations and traditional processes please see my previous post DECARBOXYLATION (DECARB) 101.

I’ve used the term “jar tech” in a few posts for CWD, making sauce and sugar wax, and pure EHO carts.  The term simply refers to using a jar as a vessel to achieve some kind of end goal.  In this post I’m specifically presenting the results of using jar tech for decarbing only.  The testing data shows the terpenes in the control samples without decarb remained in every subsequent decarbed sample as well. 


This process is important because most traditional home decarb processes ruin a concentrate’s flavor and aroma, negatively impacting any product made using the concentrate.  Additionally, those decarb processes burn off the vast majority, if not all, of the terpenes that may have been present.  Jar tech decarb can solve both of those problems.  Now, words like “full-spectrum” can be accurately applied to fully decarbed cannabis oil where they weren’t true before.  If you start with a really beautiful extraction, then decarb using jar tech, the aroma and quality of the oil in the end will be unbelievable.  


The process is very easy and only requires a jar and a heat source.  Unfortunately, the smallest quality canning jars are 4 oz so I use a sample sizes of 20 g of oil at a time to fill the jar about 25% which seemed like a good amount to test with.  Other jars, containers, and volumes may work, I just don’t have time to test them all.

It’s important to note that I only work with clean extractions.  I don’t work with, nor encourage people to work with, heavy black plant material laden extractions.  All results and exercises in this post used clean oil bound for edibles, produced with cold temperature ethanol extraction, filtered well, and nicely purged.  Oil that isn’t filtered well, contains a lot of plant matter, or has substantial residual solvents may act very differently.

The general process idea is that an extract in a jar is able to decarb without the valuable terpene profile being blown off, oxidized, converted, or degraded.  I’m not able to provide an in-depth scientific breakdown, but I can offer an idea of what I think is going on with this process.  When heat is applied to decarb there are a few things happening; breaking off the carboxyl group to “decarb,” terpenes evaporating, and oxidation.  While decarb is a factor of temperature alone, terpene evaporation points change with pressure and oxidation depends on abundant oxygen (mostly).  What happens in our favor with the jar tech is, as heat applied to the sealed jar forces decarb to happen it also increases pressure inside the jar making it more difficult for terpenes to evaporate and there’s no free flow of oxygen so large amounts of oxidation is avoided.  In the end we have glorious, terpene rich oil that’s as decarbed as much or as little as you choose.

Step 1: Load jar 

I loaded each 4 oz canning jar with approximately 20 g of well purged oil and sealed.  Excess residual solvents in a heated, sealed jar can obviously be a hazard so only well purged oil was used.

Step 2: Choose time and temp

The temp/time combinations I chose may appear to be incredibly ad hoc, and in reality they probably are, but I wanted to establish various data points from which I could make reasonable assumptions.  I have partial, full and overly-done conversions that allow us to make a good guesstimate at the rest by applying this information to standard decarb knowledge.  I’m not a fan of imperfect data and assumptions, but living under oppressive testing regulations handicaps my efforts and I work with what I have. 

When looking at this data, an important factor to think about is how long the entire material sample was up to temp. If you think about the samples I worked with and how they were introduced to heat, you should realize a couple things.  Just because a sample was placed into a heated environment doesn’t mean the extract was at the desired decarbing temp the entire time.  Once a jar with 20 g of oil was placed in the heat, the jar, air in the jar, and entire concentrate needed to come up to heat.  The time for the all of those components to come up to heat is called the ramping time, or “ramp.”  I estimated with the temps, jars, and concentrate volume being processed, a proper ramp would be 15-30 minutes. For example, the 180°F/1 hr was probably only really at temp for about 30-minutes so if I wanted a 1 hr decarb I would have to add the ramping time of about 30-minutes and increase the total time exposed to heat to 1.5 hrs. Every case will be different and require the decision to add ramp time or not depending on concentrate volume and surface area.

Recommended Temp/Time

Decarb temp and time combinations are nearly infinite because it’s a sliding scale so these recommendations are not set in stone but a good place to start.

For carts (no ramp included):  180°F/1 hr, 200°F/45 min

Full decarb (no ramp included): 200°F/2 hr, 220°F/1.5 hr, 240°F/1 hr.

Step 3: Choose heat source  

Choose a heat source that fits the desired time and temp.  The temps involved here can be achieved in a number of ways; sous vide, Instant Pot, oven, steam, and a double boiler.  There are going to be people asking if they can use the Ardent to do this?  The answer is yes, you probably can with some assumptions about temps and only if you already have one, for God’s sake please DON’T go out and buy one of those for decarbing, it’s silly.

Step 4: Load jar then place in heated environment

I’m only comfortable using good quality, brand canning jars so I’ve restricted my experimentation to those.  I like to work with the jars about 25% full.  After putting the concentrate in the jar, I sealed it and placed into the pre-heated environment of choice.  It’s that easy.  

*Working with glass in changing temp environments and pressures can be hazardous so caution and appropriate hand and eye protection is required.

Step 5: Remove from heat and allow to cool

After the allotted time has passed, remove the jar and allow to cool naturally on an appropriate heat resistant surface.  Opening the jar prematurely can allow some of the terpenes to evaporate out if warm enough.  A lighter, or even clear, higher cannabinoid layer may settle on the bottom.  Once the jar is completely cooled it can be opened and stirred to homogenize the oil as much as possible.  When the concentrate is stirred there can be a neat, foaming release of CO2 bubbles which is fun to watch but be careful of overflow.  If it foams up, after stirring I set it aside for a while and when all the bubbles settle the oil is ready to be used!


Two sets of testing were performed with different starting materials and terpene profiles.  An interesting point to keep in mind is, as decarb takes place terpenes represent a slightly higher percentage weighting as cannabinoids lose weight.  Some of these samples were purposefully under or over processed to see a range of results but as far as the terps are involved, they are all in a pretty tight range which is great news. 


The preparation and execution of these posts require a great deal of time, effort, material, testing fees and more.  Steve Wenger stepped up and helped out with everything here.  Without his help on this project it would not have been possible.  Thank you very much Steve!!

Not being able to collect more data points and iterate these tests for a more comprehensive and potentially accurate guidance is really frustrating, but with Colorado’s testing regulations as they are we do what we can.  With that in mind, I expect some changes and updates to this information in the future and hope to refine the process and info down the road.

One pretty cool thing we can see is that in some samples that were probably over processed with time and/or temp the CBN levels are elevated but the terpenes are still nicely represented.  Obviously, with traditional heat application decarbing techniques and “decarbing appliances” this hasn’t been possible.  It seems that the testing indicates pretty high CBN conversion compared to CWD and I’m not sure why but it’s something to keep in mind.  Before taking it too far out of context, realize it’s only a small amount of CBN conversion, and if you look at the “total potential THC” numbers it’s clear that there was no real negative impact there.

I haven’t test CBD with this method yet, but I suspect it will be in line with all other CBD and THC comparisons we’ve seen previously. Almost every time, at a chosen temp CBD takes twice as long as THC. Until we come up with comparative data I will be simply doubling the time I would normally use for THC and call it a day.

Lastly, this post is only a reporting of our testing and not a recommendation for anyone to use at home.  There are hazards when working with the sealed, heated glass, heating sources, and especially if residual solvents are not well purged. Anyone attempting to replicate this process does so at their own risk and is encouraged to use all applicable safety precautions.





  1. Thanks again for the detailed experiments and well written results. I do have an Ardent FX (which I got for an unbelievable $100) but I’m going to try your technique for cart oil.

  2. Hi Ichi, another great post. Thanks again for all the time and effort you put into this.

    A few quick questions if I may, with the development in post ethanol recovery “Jar Tech” for decarbing are you no longer completing a “CWD” on the extraction before ethanol recovery?

    What is your experience with viscosity differences between CWD and Jar Tech? I recently completed a very clean wash and used CWD for 3 days (full decarb) then recovered the ethanol. After completing the final purge I was left with a very high quality extract that split out with a clear cannabinoid layer (it looked incredible and smelt even better). The layers were then mixed together but had a very high viscosity. I managed to get some of the the extract into a ccell cart but due to the high viscosity it doesn’t “flow” well. Even after being left for weeks the cart doesn’t draw well.

    Have I taken my final purge too far? Would “Jar Tech” yield a better viscosity result? It’s wonderfully terpy but is not usable in carts in its current form.

    Any guidance would be greatly appreciated.

    1. Sounds like you are doing right. The concentrate will set up very tight if purged well but that should still work well in carts as long as you are using good CCELL carts.

  3. Thank you so much for the detailed experiments and write up. Essentially, do the extraction with non decarbed flower, and decarb the oil, right? I have tried a variation where I extract, mix in the MCT in a 1 ounce bottle and then decarb @260 for an hour. I wonder if this is comparable. Would take me a while to get 20g of oil with the little machine, if you consider doing this again, I wonder if it would be possible to test with a smaller amount.

    1. I have decarbed in MCT and it has worked. I just haven’t been able to test it properly. My guess is that that should work very well but only guessing at this point.

Leave a Reply